Abstract
Heavy metal ions have been one of the most serious wastewater pollution problems. The physicochemical parameters of the industrial wastewater including the heavy metals "Cd, Pb, Zn, Ni, Cu, Co, Fe and Mn" for a petrochemicals plant were measured. The marine green algae Chlorella vulgari was used as efficient, eco-friendly and low cost biosorbent for heavy metals ions removal from industrial wastewater. pH, nitrates, Temperature, sulphates, orthophosphate, and heavy metals including Pb, Fe Cu, Cr, Zn, Cd, Ni and Mn were measured. According our results, the biosorption efficiency was 20% after 15 min of water treatment, while after 60 min the efficiency reached to 84.5% meanwhile after 120 min, the efficiency rate remained stable or was slightly lower than 60 min at biomass weight 1 g/L. Fresh biomass of the micro-green alga C. vulgari used as low cost, efficient, and eco-friendly biosorbent for some heavy metals’ removal.
Keywords:
Chlorella vulgaris, heavy metals, biosorption, and Immobilization
References:
1) Abdel-Aal, E. I.; Mofeed, J. (2020). Mass production of Arthrospira platensis on the livestock manure for use as a protein source in animal feed. Egyptian Journal of Aquatic Biology and Fisheries, Vol. 24 (7): 725 – 739.
2) Ahalya, N.; Ramachandra, T.V. and Kanamadi, R. D. (2003). Biosorption of heavy metals, Research Journal of Chemistry and Environment, Vol.7 (4).
3) American public health association (APHA) (1985) standard he examination of water and wastewater ,17th edn. American public health association, Washington, D.C,
4) American public health association (APHA) (1989) standard he examination of water and wastewater ,sewage and industrial wastes . 16th Ed.New York, 1193.
5) Ardila, L.; Rubén, G. and Montenegro, L. (2017). Sorption capacity measurement of Chlorella Vulgaris and Scenedesmus Acutus to remove chromium from Tannery Waste Water, Conf. Ser.: Earth Environ. Sci. 83.
6) Atul, S. and Narang, H. K. (2018).Performance modeling and benchmarking of green supply chain management: an integrated fuzzy approach,” Benchmarking. 25, 5
7) Aziz, Q.; Inam, A. S. and Siddiqi, R. H. (1996). Long term effects of irrigation with chemical industry wastewater. J. Environment Sci. Health., A31(10): 2595-2620.
8) Bischoff, H. B. (1963). Some Soil Algae From Enchanted Rock and Related Algal species.Physcological Studies IV, 1-95.
9) Campbell, K. M.; Gallegos, T. J. and Edward, R. L. (2015). Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Applied Geochemistry, 57, 206-235
10) Chen, S. (2005). Bioremediation potential of spirulina: toxicity and biosorption studies of lead. J Zhejiang Univ. SCI, Biology. 6B (3): 171-174.
11) Davis T. A.; Volesky, B.; Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res., 37:4311–4330
12) Deng, L. P.; Zhu X. B.; Su, Y. Y.; Su, H. and Wang X. T. (2008). Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chinese J Oceanol Limnol, 26(1):45-49.
13) Drakare, S.; Blomqvist, P.; Bergstorm, A. and Jansson, M. (2003). Relatioships between picophyto plankton and environmental variables in lake along a gradient of water colour and nutrient cintent. Freshwater biology, 48:729-740.
14) Dwivedi, S. (1989). Bioremediation of Heavy Metal by Algae: Current and Future Perspective, Journal of Advanced Laboratory Research in Biology, 195-199.
15) Eccles, H. (1999). Treatment of metal-contaminated wastes: Why select a biological process?” Trends in Biotechnology, Vol. 17, pp. 462-465.
16) Estrella, L. R. and Guevara-Garcia, A. A. (2009). Heavy metal adaptation. ELS Encyclopedia of Life Sciences. John Wiley and Sons, Ltd., Chichester, pp. 1-9.
17) Fard, F.; Azimi, A. and Bidhendi, G. (2011). Batch kinetics and isotherms for biosorption of cadmium onto biosolids. Desalin Water Treat, 28, 69-74.
18) Gao, X. and Song, J. (2005). Phytoplankton distribution and their relationship with environmental in Chanjiang estuary , China. Marine pollution Bulletin,50(3): 327-355.
19) Gaur, A. and Adholeya, A. (2005). Pro spects of arbuscul armycorrhizal fungi in phy to remediation of heavy metal contaminated soils.Curr.Sci., 86(4), 528–534.
20) Handojo, D. U.; Keng, X. T.; Zhi, Y. D. C.; Jia, Y.; Jie, J. O. and Zheng B. (2016). Biosorption of heavy metal by algae biomass in surface water, Journal of Environmental Protection, 7, 1547-1560.
21) Harabawy, A. S. and Mosleh, Y. Y. (2014). The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicology and Environmental Safety, 104, 28-35
22) Hashim, M. A. and Chu K. H. (2004). Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal, 97, 2–3, 15, 249-255.
23) He, J. and Chen J.P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol, 160:67–78.
24) Ibrahim, M. I.; Asad, F. H. and Yahia A. A. (2016). Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon, Egyptian Journal of Basic and Applied Sciences, 3, 241–249.
25) Iyer, A.; Mody, K. and Jha, B. (2004). Accumulation of hexavalent chromium by an exopoly saccharide producing marine Entero bactercloaceae. Mar. Pollut.Bull., 49, 974–997.
26) Jingxi, M. a.; Shuqing, W. V.; Ravi, S.; Supriya, B. and Anoop, K. S. (2020). Determination of Physicochemical Parameters and Levels of heavy Metals in Food Waste Water with Environmental Effects, Bioinorganic Chemistry and Applications.
27) Juttner, I.; Rothfritz, H. and Ormerdo, S. J. (1996). Diatoms as indicators of river quality in Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Freshwat. Biol., 36: 475 - 486.
28) kumar, A.V.; AL Hashimi S.;and Hili. N. (2008). Investigation of kinetics and mechanism involved in the biosorption of heavy metals on activated sludge. Int. J. Green Energy, 5: 313-321.
29) kumar, R.; Vijayaraghavan, K.; Thilakavathi, M.; Iyer P. V. R. and Velan, M. (2006). Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions, Journal of Hazardous Materials, 136,791-799
30) Kumar, S. N.; Sahu, A. K. and Sahu, A. K. (2018). Green supply chain management assessment under chains of uncertain indices: an intellectual approach, Journal of Modeling in Management, 13, 4, 973-993.
31) Kunkel, R. and Stanley. E. M. (1973). Atomic absorption analysis of strong heavy metal chelating agents in water and waste water, Anal. Chem. 45, 8, 1465–1468.
32) Larson, C. A. and Passy, S. I. (2012). Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiology Ecology, 80(2), 352-362.
33) Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: are view of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subst. Res. 2(5),1–25
34) Legendre, P. and Legendre, L. (1998). Numerical ecology. Elsevier. Developments in environ-mental modelling, Elsevier Scientific Publ. Co., Amsterdam Netherlands 9: 419 p
35) Lesmana, S.; Febriana, N. F.; Soetaredjo, E. J.; Sunarso, y. and Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochemical Engineering Journal.
36) Liu, Q.;Yanqing, S.;Wenjing, W.;Changyu, L. and Guoqiang, Z. (2020). Remediation and its biological responses of Cd contaminated sediments using biochar and minerals with nanoscale zero-valent iron loading, Science of The Total Environment, Volume 713.
37) Mehta, S. K. and Gaur, J. P. (2005). Use of Algae for Removing Heavy Metal Ions from Wastewater: Progress and Prospects, Critical Reviews in Biotechnology, 25:3, 113-152.
38) Metwali, M.R., Gowayed, M.H., Omar, A. M. and Mosleh, Y. Y. (2013). Evaluation of Toxic Effect of Copper and Cadmium on Growth, Physiological Traits and Protein Profile of Wheat (Triticum aestivium L.), Maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Applied Sciences Journal, 21 (3): 301-314.
39) Mofeed J. and Mosleh, Y. Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture, Ecotoxicology and Environmental Safety 95, 234–240.
40) Mofeed, J. (2017). Biosorption of Heavy Metals from Aqueous Industrial Effluent by Non-living Biomass of Two Marine Green Algae Ulva lactuca and Dunaliellasalina as Biosorpents, The Egyptian Society for Environmental Sciences, 16 (1):43-52.
41) Mofeed, J. (2020). Impacts of ZnO Nanoparticles on Growth and Antioxidant Enzymes of the Green Alga Scenedesmus obliquus. Afr.J.Bio.Sc. 2(4): 1-12.
42) Mofeed, J.; Deyab, M.A; Mohamed, B. ; Moustafa, M.; Negm S.; El-bilawy E. (2021). Antimicrobial activities of three seaweeds extract against some human viral and bacterial pathogens. Journal of Biocell, 46(1): 247-261.
43) Mosleh, Y. Y. (2013). Role of Dietary Vitamins A, C, E and Selenium in Preventing Heavy Metals Toxicity in Nile tilapia (Oreochromis niloticus). Journal of Applied Plant Protection; Suez Canal University, Volume (1), 2013: 15-23
44) Mosleh, Y. Y. and Omar Almagrabi A. (2012). Heavy metal accumulation in some vegetables irrigated with treated wastewater. IJGHC, 2, 1, 81-90.
45) Mosleh, Y., Mofeed, Y., Omar, A., Kadasa, M., El-Alzahrani, H. S. and Fuller, M. P. (2014). Residues of heavy metals, PCDDs, PCDFs, and DL-PCBs some medicinal plants collected randomly from the Jeddah, central market. Life Science Journal, 11(7).
46) Mosleh, Y.Y.; Paris-Palacios, S. and Biagianti-Risbourg, S. (2006). Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere, 64, 121–128.
47) Mosleh, Y.Y. and Mofeed, J. (2014). Bio-chemical biomarkers in algae Scenedesmus obliquus exposed to heavy metals Cd, Cu and Zn. Life Science Journal, 11(10).
48) Muylaert, K.; Dasseville, R. and De, L. (2005). Dissolved organic carbon in the fresh water tidal reaches of the Schelde estuary. Estuarine, Coastal and Shelf Science, 64:591-600.
49) Nashwa, H. M. (2018). Bioremediation of wastewater by fresh and dry algae.
50) Ogemdi, I. K. and Gold, E. E. (2018). Physico-Chemical Parameters of Industrial Effluents from a Brewery Industry in Imo State, Nigeria, Advanced Journal of Chemistry-Section A, 1(2), 66-78
51) Pearson's Chemical Analysis of Foods Eighth Edition,1981.
52) Raymont, J. G. (1980). Plankton and productivity in the oceans. 2ed. (I). Phytoplankton, 476.
53) Sadiq I. M.; Swayamprava D.; Chandrasekaran N. and Mukherje A. (2017). Corrigendum to “Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 142: 513-521.
54) Salama, El- Sayed, Hyun, S. R.; · Subhabrata, D.;· Moonis A. K.; · Reda A. I.; Chang, S. W. and · Jeon, B. H. (2019). Algae as a green technology for heavy metals removal from various wastewater, World Journal of Microbiology and Biotechnology, 35:75.
55) Sandau, E.; Sandau, P.; Pulz, O. and Zimmermann, M. (1996). Heavy metal sorption by marine algae and algal by-products. Acta Biotechnol. 16, 103–119.
56) Schippers, P.; Luring, M. and Scheffer, M. (2004).Increase of atmospheric Co2 Promots phycoplankton productivity. Ecology Letters, 7:446-451.
57) Shanab, S.; Essa, A. and Shalaby, E. ( 2012). Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates), Plant Signaling and Behavior, 7:3, 1–8.
58) Singh, A.; Mehta, S.K. and Gaur, J. P. (2007). Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol, 23:1115–1120
59) Topcuoglu, S.; Guven, K. C.; Balkis, N. and Kibasoglu, C. (2003). Heavy metal monitoring of marine algae from the Turkish Coast of the balck sea,1998–2000. Chemosphere, 52, 1683–1688.
60) Travieso, L.; Benitez, F. and Dupeyrón R. (1999). Algae growth potential measurement in distillery wastes, Bull. Environ. Contam. Toxicol., 62:483-489.
61) Wang, J. L and Chen, C. (2009). Biosorbents for heavy metals removal and their future a review,” Biotechnol. Adv., 27, 195-226.
62) World Health Organization (WHO), Guidelines for drinking-water quality, Health Criteria and other supporting information, Geneva, 1990.
63) Yu, Q.; Matheickal, J. T.; Yin P and Kaewsarn, P. (1999). Heavy metal uptake capacities of common marine macro algal biomass. Water Res 33:1534–1537.
64) Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A. F.; Moheimani, N. R. and Henry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage, 181:817–831.